Study Guide for Unit 4 Lesson 6

Lesson 6-Fraction Concepts

Improper Fractions & Mixed Numbers

*An <u>improper fraction</u> has a numerator greater than its denominator. Sometimes we say the fraction is top heavy.

<u>12</u> 8

*A mixed number has a whole number and a fraction.

 $1\frac{5}{6}$

Converting to Mixed Numbers to Improper Fractions

*Use multiplication to convert a mixed number into an improper fraction.

Step 1: Multiply the whole number by the denominator.

$$\frac{3}{4}$$
 $\frac{3}{4}$ \times 4 = 12

Step 2: Add your answer to the numerator

$$12 + 3 = 15$$

Step 3: Put the new numerator over the old denominator.

Converting Improper Fractions to Mixed Numbers

*Use division

Step 1: Divide the numerator by the denominator

Step 2: Write the remainder as a fraction (over the denominator)

Step 3: Write your answer as a mixed number and simplify if needed.

Equivalent Fractions

How to form equivalent fractions

Step 1: Multiply or divide both the numerator and denominator by the same number.

Step 2: Write the new fraction.

$$\frac{3}{4} = \frac{3}{4} = \frac{3}$$

How to tell if you have equivalent fractions

Step 1: Cross Multiply

Step 2: Compare the two products.

Step 3: If the products are equal, the fractions are equivalent. Otherwise they are not.

Comparing Fractions

Step 1: Write the two fractions

Step 2: Cross multiply

Step 3: Compare the two numbers

28 is larger than 15, so

Simplifying Fractions

There is one method that uses the GCF.

SIMPLIFYING FRACTIONS

Divide by the GCF.

$$\frac{25}{75}$$

1. Find the GCF of 25 and 75 by listing factors, using prime factorization or Tic-Tac-Toe.

2. Divide the numerator and denominator by their GCF.

$$\frac{25}{75} \div \boxed{\frac{25}{25}} = \boxed{\frac{1}{3}}$$

There is another method that uses the Cake Method.

- 2. Write it horizontally 24 36
- 3. Put Bars on the numbers ______ 24 36
- 4. Start with 2, can they both be divided by 2? In this case yes.

 2 24 36
 12 18

 Do the division
- 5. Can they both be divided by 2 again? In this case yes. do the division by adding more bars.
- 6. Can they both be divided by 2 again? In this case no. move on to 3, can they both be divided by 3? Yes. Add more bars and divide.

			_
2	24	36	
2	12	18	
3	6	9	
('	2	3	_

24

6

12 18

36

9

It's called the Cake method because the lines looks like layers of a cake

7. Can they both be divided by 3 again? no. 4? 5? 6? No. Since they can only be divided by 1 we know we are done

2	24	36		
2	12	18		
3	6	9		
	2	3	_ =	: ² / ₃

8. Your ANSWER.

$$\frac{24}{36} = \frac{2}{3}$$

Section 1: Simplify the fractions:

1)
$$\frac{40}{50} =$$
 2) $\frac{8}{16} =$ 3) $\frac{6}{9} =$ ____

Section 2: Are the following fractions equivalent?

A) Choose the correct equivalent fraction in each problem.

$$\frac{2}{16} = ?$$

a)
$$\frac{1}{4}$$

b)
$$\frac{1}{8}$$

a)
$$\frac{1}{4}$$
 b) $\frac{1}{8}$ c) $\frac{4}{20}$ d) $\frac{3}{18}$

d)
$$\frac{3}{18}$$

$$\frac{1}{3} = ?$$

a)
$$\frac{3}{15}$$

b)
$$\frac{2}{14}$$

c)
$$\frac{8}{24}$$

a)
$$\frac{3}{15}$$
 b) $\frac{2}{14}$ c) $\frac{8}{24}$ d) $\frac{5}{10}$

$$\frac{25}{10} = ?$$

a)
$$\frac{5}{2}$$

b)
$$\frac{10}{16}$$

c)
$$\frac{1}{5}$$

a)
$$\frac{5}{2}$$
 b) $\frac{10}{16}$ c) $\frac{1}{5}$ d) $\frac{30}{20}$

Section 3: Compare the fractions:

Write the Correct Comparison Symbol (>, < or =) in Each Box

1)
$$\frac{2}{9}$$
 $\frac{3}{7}$ 2) $\frac{4}{5}$ $\frac{10}{11}$

Section 4: Converting the fractions:

Converting Improper Fractions to Mixed Numbers

1)
$$\frac{11}{2} =$$
 2) $\frac{31}{5} =$ 3) $\frac{25}{10} =$

$$2) \frac{31}{5} =$$

$$3) \frac{25}{10} =$$

Converting Mixed Numbers to Improper Fractions

1)
$$6\frac{3}{10} =$$

2)
$$5\frac{2}{3} =$$

1)
$$6\frac{3}{10} =$$
 2) $5\frac{2}{3} =$ 3) $7\frac{4}{5} =$

Additional Resources:

http://interactivesites.weebly.com/fractions.html

http://www.aasd.k12.wi.us/staff/boldtkatherine/mathresource
s3-6/math fractions.htm

http://www.sheppardsoftware.com/math.htm

http://www.math-play.com/math-fractions-games.html

https://www.khanacademy.org/math/arithmetic/fractions/Equivalent fractions/v/equivalent-fractions

https://www.khanacademy.org/math/arithmetic/fractions/Equivalent fractions/v/fractions-in-lowest-terms

https://www.khanacademy.org/math/arithmetic/fractions/comparing-fractions/v/comparing-fractions

https://www.khanacademy.org/math/pre-algebra/fractionspre-alg/mixed-numbers-pre-alg/v/converting-mixed-numbersto-improper-fractions